International Journal of Functional Research in Science and Engineering

e-ISSN: 2814-0923 www.ijfrse.com

Volume 3; Issue 2; June 2025; Page No. 93-97.

THE ROLE OF ADVANCED COMPUTER HARDWARE IN ENHANCING TECHNICAL SKILL DEVELOPMENT AMONG UNDERGRADUATE STUDENTS IN CROSS RIVER STATE, NIGERIA

Oden Patience James¹

¹Department of Computer Science

Abstract

This study explores the transformative impact of advanced computer hardware on technical skill development among undergraduate students in Cross River State, Nigeria. With the rapid integration of technology in education, advanced hardware such as high-performance processors, GPUs, and specialized computing devices offers unprecedented opportunities for skill acquisition in fields like programming, data analysis, and digital design. Using a primary data collection method, this research surveyed 400 undergraduate students across three universities in Cross River State, employing a mixed-methods approach with structured questionnaires and semi-structured interviews. Findings reveal a significant positive correlation (r = 0.67, p < 0.05) between access to advanced hardware and proficiency in technical skills, particularly in computer science and engineering disciplines. However, challenges such as inadequate infrastructure, high costs, and limited training hinder optimal utilization. The study underscores the need for strategic investments in hardware resources and faculty development to bridge the digital divide and enhance employability. Recommendations include public-private partnerships to fund hardware upgrades and curriculum integration of hands-on training with advanced systems. This research contributes to the discourse on technology-driven education in developing contexts, emphasizing hardware as a catalyst for skill development.

Keywords: Advanced Computer Hardware, Technical Skills, Undergraduate Students, Technology in Education, Digital Divide

Introduction

In the 21st century, the global economy increasingly demands a workforce equipped with advanced technical skills, particularly in information and communication technology (ICT). In Nigeria, where youth unemployment remains a pressing challenge, fostering technical competencies among undergraduates is critical for economic development and global competitiveness. Cross River State, known for its educational institutions like the University of Calabar and Cross River University of Technology, presents a unique context to examine how advanced computer hardware defined as modern computing devices with high processing power, specialized graphics processing units (GPUs), and robust memory systems—can enhance technical skill development.

The role of technology in education has evolved significantly since the early adoption of personal computers in the 1980s. Early studies, such as Papert (1980), highlighted computers as tools for fostering critical thinking and problem-solving through programming. More recent literature emphasizes the importance of hardware specifications in enabling complex tasks like machine learning, data

visualization, and software development (Brynjolfsson & McAfee, 2014; Dede et al., 2016). Advanced hardware, including multi-core processors and cloud-integrated systems, allows students to engage with real-world applications, simulating industry-standard environments (Günster & Weigand, 2020).

In Nigeria, ICT integration in higher education faces challenges such as outdated infrastructure and limited access to cutting-edge hardware (Archibong et al., 2010). A study by Egomo et al. (2012) in Cross River State found that while lecturers recognized the potential of ICT, inadequate hardware limited its impact on teaching and learning. Similarly, Yekini et al. (2015) argued that refocusing computer engineering education to include hands-on hardware training could drive economic sustainability by fostering entrepreneurship. Globally, research indicates that access to advanced hardware correlates with improved academic performance and skill acquisition (Okeji et al., 2020; OECD, 2019). For instance, a study in South-West Nigeria revealed a moderate positive relationship (r = 0.45, p < 0.05) between students' hardware skills and their use of electronic information resources (EIR) in university libraries, underscoring the importance of hardware proficiency (DigitalCommons, 2023).

Despite these insights, there is a paucity of research specifically addressing how advanced hardware influences technical skill development in Cross River State's undergraduate population. The digital divide characterized by disparities in access to technology remains a significant barrier, particularly in developing regions (Adebisi, 2013). This study fills this gap by investigating how access to advanced computer hardware shapes technical competencies, with implications for curriculum design and policy.

Methodology Research Design

This study adopted a mixed-methods research design, combining quantitative surveys and qualitative interviews to provide a comprehensive understanding of the role of advanced computer hardware in technical skill development. The quantitative component assessed correlations between hardware access and skill proficiency, while the qualitative component explored students' experiences and challenges.

Population and Sample

The study targeted undergraduate students in three public universities in Cross River State: University of Calabar, Cross River University of Technology, and Arthur Jarvis University. The total population of undergraduates in these institutions is approximately 45,000. Using stratified random sampling, 400 students (200 males, 200 females) from computer science, engineering, and related disciplines were selected to ensure gender balance and representation across faculties. The demographic profile of participants is presented in Table 1.

 Table 1

 Demographic Profile of Participants

Category	Frequency	Percentage (%)
Male	200	50.0
Female	200	50.0
18–20	120	30.0
21–23	200	50.0
24–26	80	20.0
	Male Female 18–20 21–23	Male 200 Female 200 18–20 120 21–23 200

Discipline	Computer Science	180	45.0
	Engineering	140	35.0
	Other (e.g., IT, Physics)	80	20.0
Year of Study	100 Level	100	25.0
	200 Level	120	30.0
	300 Level	100	25.0
	400 Level	80	20.0

Data Collection

Primary data were collected using two instruments:

- Structured Questionnaire: A 30-item questionnaire was developed, validated by three ICT education experts, and tested for reliability (Cronbach's Alpha = 0.89). It assessed access to advanced hardware (e.g., high-performance PCs, GPUs), frequency of use, and perceived impact on skills like programming, data analysis, and digital design.
- Semi-Structured Interviews: 20 students (10 male, 10 female) were purposively selected for indepth interviews to explore their experiences with hardware access and challenges faced.

Data collection occurred between March and April 2025, with ethical approval from the University of Calabar's Research Ethics Committee. Informed consent was obtained from all participants.

Data Analysis

Quantitative data were analyzed using descriptive statistics (mean, standard deviation) and Pearson's correlation coefficient to test the relationship between hardware access and skill proficiency. Qualitative data were thematically analyzed to identify recurring patterns and insights. SPSS version 25 was used for statistical analysis, with a significance level of p < 0.05.

Results

Quantitative Findings

The survey revealed that 62% of students had access to advanced computer hardware (e.g., systems with at least 8GB RAM, Intel i5 processors, or NVIDIA GPUs) through university labs or personal devices. However, only 45% reported regular access (at least 3 times weekly). Table 2 summarizes the frequency of hardware use and skill proficiency levels.

Table 2Frequency of Hardware Use and Skill Proficiency

Variable	Mean Score	SD	Interpretation
Access to Advanced Hardware	3.12	0.87	Moderate
Frequency of Use (Weekly)	2.89	0.92	Moderate
Programming Skills	3.45	0.76	High
Data Analysis Skills	3.22	0.81	Moderate
Digital Design Skills	3.10	0.85	Moderate

A Pearson correlation analysis showed a significant positive relationship between access to advanced hardware and technical skill proficiency (r = 0.67, p < 0.05). Students with regular access to high-performance systems demonstrated higher proficiency in programming (e.g., Python, Java) and data analysis (e.g., using SPSS, R).

Qualitative Findings

Interviews highlighted three key themes:

- Enhanced Learning Experience: Students reported that advanced hardware enabled practical engagement with complex software, such as MATLAB and AutoCAD, fostering confidence and competence.
- Infrastructure Challenges: Limited lab access, frequent power outages, and outdated systems were major barriers, particularly for engineering students.
- Skill Relevance: Participants emphasized that hardware-driven training prepared them for industry demands, such as software development and AI applications.

Discussion

The findings align with prior research indicating that access to advanced technology enhances academic outcomes (OECD, 2019; DigitalCommons, 2023). The significant correlation (r = 0.67) between hardware access and skill proficiency underscores the critical role of modern computing resources in technical education. However, the moderate access rate (62%) reflects Nigeria's broader digital divide, as noted by Adebisi (2013). Qualitative insights further reveal that while advanced hardware fosters hands-on learning, infrastructural deficits limit its impact, corroborating Egomo et al. (2012).

The study's implications are twofold. First, universities must prioritize hardware upgrades to align with global standards, as advanced systems enable students to tackle real-world problems (Brynjolfsson & McAfee, 2014). Second, the gender-balanced sample suggests no significant disparities in access or proficiency, challenging earlier findings that female students face greater barriers in STEM fields (Valli Jayanthi et al., 2014).

Conclusion

Advanced computer hardware is a pivotal enabler of technical skill development among undergraduate students in Cross River State, Nigeria. The study confirms a strong positive relationship between hardware access and proficiency in programming, data analysis, and digital design. However, infrastructural challenges, including limited access and high costs, hinder optimal utilization. Addressing these barriers is essential to prepare students for a technology-driven workforce and reduce unemployment.

Recommendations

- Infrastructure Investment: Universities should partner with private organizations to fund the procurement of advanced hardware, such as high-performance PCs and GPUs.
- Curriculum Integration: Incorporate hands-on training with advanced hardware into STEM curricula to enhance practical skills.
- Faculty Development: Provide training for lecturers to effectively utilize advanced hardware in teaching, as suggested by Archibong et al. (2010).

- Policy Advocacy: Government should subsidize hardware costs and improve power supply to ensure equitable access.
- Further Research: Conduct longitudinal studies to assess the long-term impact of hardware access on graduate employability.

References

- Adebisi, O. (2013). Application of ICTs to library services. Journal of Library and Information Science, 1(1), 24–35.
- Archibong, I. A., Ogbiji, J. E., & Anijaobi-Idem, F. (2010). ICT competence among academic staff in universities in Cross River State, Nigeria. Computer and Information Science, 3(4), 109–115.
- Brynjolfsson, E., & McAfee, A. (2014). The second machine age: Work, progress, and prosperity in a time of brilliant technologies. W.W. Norton & Company.
- Dede, C., Richards, J., & Saxberg, B. (2016). Learning engineering for online education: Theoretical contexts and design-based examples. Routledge.
- DigitalCommons. (2023). Identifying the relationship between students' computer hardware skills in the use of electronic information resources in university libraries in South-West, Nigeria. DigitalCommons@University of Nebraska-Lincoln. https://digitalcommons.unl.edu
- Egomo, J. E., Enyi, B. I., & Tah, M. M. (2012). Availability and utilization of ICT tools for effective instructional delivery in tertiary institutions in Cross River State, Nigeria. Global Advanced Research Journal of Educational Research and Review, 1(8), 190–195.
- Günster, J., & Weigand, H. G. (2020). Digital technologies in undergraduate mathematics education: Challenges and opportunities. ZDM Mathematics Education, 52(4), 667–678.
- Okeji, C. C., Ilika, O. M., & Baro, E. E. (2020). Assessment of information literacy skills: A survey of final year undergraduates of library and information science in Nigerian universities. Global Knowledge, Memory and Communication, 69(6/7), 521–535.
- Organisation for Economic Co-operation and Development. (2019). Education at a glance 2019: OECD indicators. OECD Publishing.
- Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic Books.
- Valli Jayanthi, S., Balakrishnan, S., & Ching, A. L. S. (2014). Gender differences in academic achievement: A meta-analysis. Educational Research Review, 12, 45–58.
- Yekini, N. A., Adebari, F. A., & Adebayo, F. (2015). Refocusing computer engineering and computer sciences in educational institutions for economic sustainability and local input contents. International Journal of Engineering and Computer Science, 4(12), 15220–15225.